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 A B S T R A C T

In the field of wind energy utilization, low-altitude wind speed and wind shear coefficient serve as pivotal 
variables for wind speed extrapolation, and thus, the wind speed at hub height or specific height can be 
effectively inferred. Although the power law model is widely used to describe wind profiles, traditional studies 
often assume that the wind shear coefficient is constant, typically 1/7. This simplification ignores the dynamic 
changes of the wind shear coefficient and potentially lead to prediction errors. To solve this problem, this study 
proposed an innovative multi-task prediction method using dynamic graph interactive neural network(DGINet), 
and the proposed method supports parallel computing. The novelty of this study lies in fully considering the 
time-varying characteristics of the wind shear coefficient and can accurately predict the wind speed and wind 
shear coefficient at the same time, so as to more accurately construct a vertical wind profile. The proposed 
DGINet consists of idealized sub-networks simplified to individual neuron and backbone network adopting the 
encoder–decoder architecture. The proposed encoder includes modified sample reconstruction strategy within 
the sliding window, which expands the data dimension, and fuses the improved gated graph unit with the cross 
convolution operator to model and perceive the multi-level correlation between samples. The experimental 
results show that the proposed model can accurately and simultaneously predict wind speed and wind shear 
coefficient within the prediction horizons of 15 min, 30 min and 1 h.
. Introduction

In contrast to the environmentally detrimental and exhaustible na-
ure of fossil fuels, wind energy stands out as a favored, clean, and 
enewable resource [1]. Wind power generation is the main form of 
ind energy utilization and has grown rapidly in recent years. Notably, 
he energy yield from wind turbines is intricately linked to the cube 
f the wind speed [2]. Consequently, precise wind speed prediction 
s crucial for assessing wind energy potential and integration into the 
ower grid [3].
Compared with ordinary wind speed prediction tasks, the difference 

s that the wind turbine hub height needs to be considered, which 
s usually between 50 and 150 m. Current research often relies on 
ind speed at the hub height or the equivalent rotor wind speed for 
ind power assessment [4]. Therefore, vertical wind patterns within 
ind farms are crucial for wind energy research, as they show how 
ind speed and direction change with height. However, measuring 
hese conditions at turbine hub height requires tall towers that are 
ostly to install [5] and maintain. From an engineering perspective, 
he deployment and upkeep of numerous such towers present practical 
nconveniences [6]. In a wind farm, a more feasible strategy involves 
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the establishment of a single high wind tower complemented by several 
lower auxiliary towers. In this way, the wind speed of the vertical 
wind profile is extrapolated to the desired height using the wind shear 
model and the lower-altitude wind speed [7]. Moreover, significant 
wind shear can induce vibrations or destructive loads, leading to rotor 
blade fatigue [8] and potentially reducing the lifespan of the wind tur-
bine [9]. Consequently, precise prediction of the wind shear coefficient 
is crucial [10], as it is the only variable in the wind shear model.

In current research, power law or logarithmic law is generally used 
to characterize the wind shear phenomenon [11]. According to the 
literature summary [12,13], the power law stands out as the most 
dependable and widely utilized model for extrapolating wind energy, 
often employing a fixed empirical value of 1/7 or specific constant. 
Current methodologies typically rely on such a fixed value to describe 
vertical wind speed profiles. However, this approach inherently as-
sumes a constant mathematical relationship between wind speed and 
height, which is often an oversimplification. Consequently, this limita-
tion, combined with the variability of actual wind patterns, can lead 
to significant errors when applied universally [14]. Literatures indicate 
that the wind shear coefficient is not static but changes dynamically 
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with wind speed at lower altitudes and various meteorological condi-
tions [15], such as temperature gradients [16], time of day [8], and 
atmospheric stability [17]. Engineers use predicted wind speed mea-
surements at lower heights along with a mathematical factor describing 
how wind speeds change vertically to estimate full wind patterns. 
Improving the accuracy of this vertical wind-speed relationship can 
lead to more reliable evaluations of a site’s wind energy potential [18]. 
Table  1 provides an overview of the research pathways for wind speed 
extrapolation [19]. Given the interdependence of wind speed and the 
wind shear coefficient, both of which are critical prediction metrics, 
simultaneous prediction of these variables would be highly beneficial. 
Therefore, it is proposed to employ a multi-task learning approach 
to concurrently predict wind speeds and shear coefficients. Then, the 
problem becomes how to design a multi-task learning model to achieve 
simultaneous prediction of wind speed and wind shear coefficient with 
high accuracy.

This approach is particularly well-suited for the study’s applica-
tion because, in the field of wind power prediction, multi-task learn-
ing [20] has already demonstrated its effectiveness in addressing mul-
tiple related tasks simultaneously. With the help of sharing represen-
tations [21], it enhances the model’s performance across each task, 
and the exploitation of inter-variable correlations effectively relieves 
the challenge of data scarcity [22–25]. Multi-task learning facilitates 
the joint prediction [26] of wind speed and wind power across various 
locations [27], taking into account spatial correlations [28]. Further-
more, for multivariate tasks, which include temperature, wind speed, 
and air pressure, multi-task learning can identify the correlations and 
interactions in the evolutionary patterns of different variables, enabling 
synchronous meteorological prediction [29]. Not only limited to meteo-
rological information, the interdependencies and coupling information 
between wind and photovoltaic power outputs within the same region 
can also achieve complementary and synchronous prediction [30]. 
However, there is still a knowledge gap in the multi-task prediction 
of wind speed and wind shear coefficient. The limitations of existing 
research are not only this, but also the main approach in wind speed 
prediction, due to the limited number of variables available, has been to 
focus on single-variable prediction, and the recurrent neural networks 
widely used for prediction do not support parallel computing. More im-
portantly, despite there are many studies on wind shear phenomenon, 
there is a notable scarcity of studies dedicated to the dynamic tracking 
and prediction of the wind shear coefficient.

To address this identified gap, particularly the scarcity of dynamic 
wind shear coefficient prediction research, this study constructs a multi-
task learning model. This model simultaneously predicts wind speed 
and the wind shear coefficient, thereby overcoming the challenge of 
coupling between wind shear phenomena and wind speed. Its advan-
tage lies in strengthening the feature expression ability of the backbone 
network and simplifying the sub-network of a specific task into a 
single neuron, avoiding the problem of task-independent modeling 
caused by complex sub-networks, and realizing the ideal form of multi-
task learning. The model was structured around an encoder–decoder 
architecture. Initially, a novel sample reconstruction method within the 
sliding window was proposed, tailored to meet the demands of dynamic 
graph neural network processing. This method leverages the principles 
of phase space reconstruction, effectively elevating the original two-
dimensional variables to a 16-dimensional space through time delay 
reconstruction and time series order folding techniques. On this ba-
sis, the reconstructed 16-dimensional sample features were treated as 
nodes, and the node features were represented by low-order polynomial 
coefficients. Furthermore, the graph feature encoder was constructed 
using improved gated graph unit, and the spatial relationship feature 
between reconstructed data structure of the 16-dimensional sample 
features was extracted using a set of cross convolution operation. 
Afterwards, the graph feature encoding and the spatial relationship 
feature encoding were integrated. In the decoder component, we have 
simplified the sample convolution and interaction network, eliminating 
2 
downsampling and directly employing the encoder’s output features for 
interactive learning. Due to the reduction of information loss compared 
to the original structure, the modeling accuracy has been improved. 
Finally, the model yields time series prediction results for wind speed 
and wind shear coefficient through two distinct neurons, respectively. 
The accuracy of the proposed method was verified through real-world 
wind speed and wind shear coefficient, and its potential for engineering 
applications was demonstrated by high-precision prediction for 15 min, 
30 min and 1 h.

The contributions of this paper are as follows:

• A multi-task learning method based on dynamic graph interactive 
neural network was proposed for the simultaneous prediction of 
wind speed and time-varying wind shear coefficient, which helps 
to describe the wind profile. The idealized multi-task learning 
concept was improved, information mining was mainly com-
pleted through the backbone network, and each sub-network 
corresponding to a specific task was simplified to a single neuron.

• A new sample reconstruction method was designed, which in-
tegrates phase space reconstruction and time series sequential 
folding, and expands the two-dimensional variables to 16 dimen-
sions, taking into account the correlation of multiple spatial spans 
and time delay effects.

• A gated graph unit was proposed, which dynamically selects and 
controls the flow of information through a gating mechanism, so 
that it can capture complex patterns. Correspondingly, the graph 
feature used a feature representation method of a combination of 
low-order polynomial coefficients.

The rest of the paper is organized as follows: Section 2 describes the 
problem and the method related. Section 3 elaborates on the proposed 
model. Section 4 describes the experimental design and the dataset. 
Section 5 presents the analysis of the experimental results. Finally, 
Section 6 concludes the paper and discusses future research plans.

2. Preliminary and problem formulation

2.1. Wind shear model

In wind farms, since it is costly and difficult to install and maintain 
multiple wind towers directly at the hub height, a main wind tower 
is usually used in conjunction with several auxiliary wind towers. As 
shown in Fig.  1, the auxiliary wind towers adjacent to the wind turbines 
can provide more accurate wind speed data. However, the wind speed 
at the hub height needs to be obtained by extrapolation. The power law 
method is a commonly used wind speed extrapolation method, and its 
accuracy depends on the wind shear coefficient.

The power law model is also called the Hellman exponential law 
model [18] 

𝑣2 = 𝑣1

(

ℎ2
ℎ1

)𝛼
, 𝛼 =

ln(𝑣2∕𝑣1)
ln(ℎ2∕ℎ1)

, (1)

where 𝑣1 and 𝑣2 are the wind speeds at ℎ1 and ℎ2 at different heights, 
respectively. 𝛼 is the Hellman exponential, also known as the wind 
shear coefficient.

Considering that the wind shear coefficient is affected by atmo-
spheric stability and temperature gradient, it can be assumed to be 
constant within the same wind farm in a short period. Based on this, 
combined with the measured wind shear coefficient and the wind speed 
at a height of 10 m, we can construct a vertical wind profile model.

Fig.  2 shows the contour map of the daily variation of wind speed 
and wind shear coefficient. It can be seen from the figure that the wind 
speed is higher around 06:00 and 18:00 every day, and the wind shear 
coefficient is also relatively large during these two periods. Although 
the difference in wind speed during the day is not large, the pattern 
in wind shear coefficient shows significant temporal variability, which 
brings challenges to accurate prediction.
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Table 1
The literature review of wind speed extrapolation.
 Title Author Source Description  
 Investigation of wind shear coefficients and their 
effect on electrical energy generation [14]

Ebubekir Fırtın 
(2011)

Applied energy Wind data collected in Balıkesir from October 2008 to September 2009, has 
been used to show the effects of wind shear coefficient on energy production

 

 Methods to extrapolate wind resource to the 
turbine hub height based on power law: A 1-h 
wind speed vs. Weibull distribution extrapolation 
comparison [11]

Giovanni 
Gualtieri (2012)

Renewable energy A comparison is proposed between these two PL–based extrapolation 
approaches to the turbine hub height

 

 Vertical extrapolation of wind speed using artificial 
neural network hybrid system [15]

Md. Saiful Islam 
(2017)

Neural computing 
and applications

Proposes two artificial neural network hybrid system-based models using 
genetic algorithm and particle swarm optimization for vertical extrapolation 
of wind speed

 

 Use of spatio-temporal calibrated wind shear 
model to improve accuracy of wind resource 
assessment [18]

Jiale Li (2018) Applied energy The accuracy and performance of incorporating site-specific wind shear model 
calibration to predict the wind energy resource is evaluated, where six 
different methods are compared

 

 A comprehensive review on wind resource 
extrapolation models applied in wind energy [12]

Giovanni 
Gualtieri (2019)

Renewable and 
sustainable energy 
reviews

A review spanning across a 40-year period (1978–2018) and has been 
addressed on theoretical and empirical wind resource extrapolation models 
applied in wind energy

 

 A temporal model for vertical extrapolation of 
wind speed and wind energy assessment [13]

Paola Crippa 
(2021)

Applied energy Develop a new model for wind shear coefficient which is able to capture 
hourly variability across a range of geographic/topographic features

 

Fig. 1. Illustration of the wind profile and distribution of wind towers at a wind farm.
Fig. 2. Graphical representation of the contour map of the daily variation of wind speed and wind shear coefficient.
2.2. Problem formulation

Wind speed 𝑥𝑤 and wind shear coefficient 𝑥𝑠 are key variables 
for constructing wind profiles. If prediction models are established for 
them separately, they cannot be calculated synchronously, and the 
computational cost and time cost are higher than those of a unified 
3 
model. Therefore, in this paper, multi-task learning can simultaneously 
perform these two related prediction tasks {𝑖

}2
𝑖=1,2, learn a set of 

functions 𝐹 (𝑥) = {

𝑓𝑖(𝑥)
}2
𝑖=1,2 for the two variables, and the prediction 

result 𝑦̂𝑖 = 𝐹
(

𝑥𝑖
) can approach the actual result 𝑦𝑖. The multi-task loss 

𝐿𝑀𝑢𝑙𝑡𝑖 is a weighted combination of 𝐿𝑖, where 𝐿𝑖 is the loss function 
corresponding to the prediction task.
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Fig. 3. Illustration of the SCINet model.
2.3. Graph neural network

As a data structure, graph can effectively model complex relation-
ships between symbols, surpassing the representation capabilities of 
traditional data [31]. Whether it is a natural social network graph or 
the conversion of data into a graph form, such as the spatial layout 
of traffic flow [32], this structure can reveal deeper data connections. 
Therefore, graph neural networks that focus on processing dependency 
relationships [33] of graph-structured data are gradually being widely 
used in the field of natural sciences [34].

Generally, 𝐺 = (𝑉 ,𝐸,𝐴) is used to represent a graph [35], where 
𝑉 ∈ R𝑁  represents the nodes, 𝐸 represents the edges between different 
nodes, 𝐴 ∈ R𝑁×𝑁  represents the adjacency matrix, and 𝑁 is the number 
of nodes. Nodes 𝑉  have two attributes, one is its own data, and the 
other is the feature 𝐹  of nodes 𝑉 . Assuming that each node collects 𝑑-
dimensional features, then 𝐹 ∈ R𝑁×𝑑 . Sometimes, the adjacency matrix 
𝐴 is replaced by the Laplacian matrix 𝐿[36], and 
𝐋 = 𝐃 − 𝐀, (2)

𝐷𝑖𝑖 =
∑

𝑗
𝐴𝑖𝑗 . (3)

In the above concept, nodes and edges do not change over time, 
which is called static graph [37]. When the graph structure or edges 
change over time, the dynamic graph 𝐺(𝑡) = (𝑉 (𝑡𝑘), 𝐸(𝑡𝑘), 𝐴(𝑡𝑘)) can be 
viewed as a series of static graphs that model spatial relationships at 
each time step 𝑡𝑘[38].

Graph convolution is suitable for modeling spatial relationships 
[39], and activation function 𝜎 is added to nonlinearize the graph 
convolutional model [40] 

𝐻 (𝑙+1) = 𝜎
(

𝐷̃− 1
2 𝐴̃𝐷̃− 1

2𝐻 (𝑙)𝑊 (𝑙)
)

, (4)

where 𝐴̃ = 𝐴+ 𝐼𝑁  is the adjacency matrix with added self-connections 
𝐼𝑁 , 𝐷̃𝑖𝑖 =

∑

𝑗 𝐴̃𝑖𝑗 , 𝑊 (𝑙) is trainable weight matrix. 𝐻 (𝑙) ∈ R𝑁×𝐷 is the 
matrix of activations in the 𝑙th  layer [41].

For a two-layer graph convolutional network with a ReLU activation 
function, the forward model can be written as 
𝑍 = 𝑓 (𝑋,𝐴) = ReLU

(

𝐴̂ReLU
(

𝐴̂𝑋𝑊 (0))𝑊 (1)) , (5)

where 𝐴̂ = 𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 .

2.4. SCINet

The SCINet computing framework [42] shown in Fig.  3 was pro-
posed in 2022. As can be seen in Fig.  3(𝑐), by stacking 𝐾 layers of 
calculations, and the backbone architecture of the framework adopts a 
binary tree structure, as shown in Fig.  3(𝑏). SCI-Block, as the core mod-
ule of SCINet, is reflected in Fig.  3(𝑎). In this module, the input feature 
4 
𝐅 is evenly divided into two sub-features 𝐅𝑜𝑑𝑑 and 𝐅𝑒𝑣𝑒𝑛 through the
Spliting operation, achieving a reduction in temporal resolution while 
retaining most of the original information. In order to compensate for 
the information loss in the downsampling process, an interactive learn-
ing strategy is adopted between the two sub-sequences, and information 
complementation is achieved through the Interactive-learning operation.

Next, different convolution kernels are applied to 𝐅𝑒𝑣𝑒𝑛 and 𝐅𝑜𝑑𝑑 , 
respectively. Then, an Interactive-learning strategy is described, which 
achieves information interchange by learning affine transformation 
parameters.

Specifically, 4 different convolution operations are predefined,
namely 𝜙, 𝜓 , 𝜌 and 𝜂. 𝐅𝑒𝑣𝑒𝑛 and 𝐅𝑜𝑑𝑑 are transformed to hidden states 
with 𝜙 and 𝜓 , respectively. Further, the hidden states transformed to 
the formats of exp, and multiply by 𝐅𝑒𝑣𝑒𝑛 and 𝐅𝑜𝑑𝑑 , obtain 𝐅𝑠𝑒𝑣𝑒𝑛 and 
𝐅𝑠𝑜𝑑𝑑 . Here, multiply or × refers to the element-wise production. 

𝐅𝑠𝑜𝑑𝑑 = 𝐅𝑜𝑑𝑑 × 𝑒𝑥𝑝(𝜙(𝐅𝑒𝑣𝑒𝑛)), (6)

𝐅𝑠𝑒𝑣𝑒𝑛 = 𝐅𝑒𝑣𝑒𝑛 × 𝑒𝑥𝑝(𝜓(𝐅𝑜𝑑𝑑 )). (7)

Similarly, 𝐅𝑠𝑒𝑣𝑒𝑛 and 𝐅𝑠𝑜𝑑𝑑 are transformed to hidden states with 𝜌 and 
𝜂, respectively. 
𝐅′
𝑜𝑑𝑑 = 𝐅𝑠𝑜𝑑𝑑 + 𝜌(𝐅

𝑠
𝑒𝑣𝑒𝑛), (8)

𝐅′
𝑒𝑣𝑒𝑛 = 𝐅𝑠𝑒𝑣𝑒𝑛 − 𝜂(𝐅

𝑠
𝑜𝑑𝑑 ). (9)

3. Dynamic graph interactive neural network

3.1. Overall structure

In this study, Dynamic graph interactive neural network(DGINet) 
was proposed to solve the problem of synchronous prediction of wind 
speed and time-varying wind shear coefficient {𝑖

}2
𝑖=1,2, as shown 

in Fig.  4. The proposed model used a multi-task learning modeling 
framework, and the backbone network of multi-task learning was an 
encoder–decoder architecture.

The encoder input includes three groups, the node data matrix, the 
node feature matrix and the Laplacian matrix. The feature matrix and 
the Laplacian matrix are calculated by the proposed gated graph unit, 
and the data matrix is calculated by the proposed cross convolution. 
After that, the feature maps calculated by the two are added together 
to form the feature encoding of the encoder.

In the decoder, we use a simplified SCI-Block computing architec-
ture with three differences. (1) Instead of data segmentation, we use 
tensor replication to assign feature codes to 𝐅𝑜𝑑𝑑 and 𝐅𝑒𝑣𝑒𝑛 respectively, 
which avoids information loss during downsampling. (2) No exp pro-
cessing is performed to simplify the calculation. (3) The final output 
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Fig. 4. Illustration of the proposed DGINet.
results 𝐅′
𝑜𝑑𝑑 and 𝐅′

𝑒𝑣𝑒𝑛 are added. The encoder and decoder together 
form the backbone architecture.

The output of the backbone architecture is flattened and mapped to 
two different prediction tasks. Since the magnitude difference between 
the wind speed and wind shear coefficient studied in this paper is too 
large, more emphasis is placed on the wind shear coefficient in the loss 
function. 

𝐿𝑀𝑢𝑙𝑡𝑖 = 𝛾×𝐿1+𝜆×𝐿2 = 𝛾×1
𝑛

𝑛
∑

𝑖=1

(

𝑠𝑝𝑖 − 𝑠𝑝𝑖
)2+𝜆×1

𝑛

𝑛
∑

𝑖=1

(

𝑠ℎ𝑖 − 𝑠ℎ𝑖
)2
, (10)

where 𝑠𝑝𝑖 and 𝑠ℎ𝑖 represent the actual wind speed and wind shear 
coefficient, respectively. 𝑠𝑝𝑖 and 𝑠ℎ𝑖 represent the predicted wind speed 
and wind shear coefficient, respectively. 𝐿1 and 𝐿2 represent the loss 
function of the wind speed and wind shear coefficient, respectively. 
𝛾 = 0.2 and 𝜆 = 0.8 are hyperparameters used.

In addition, the Adam optimizer was used to update parameters 
during training.

3.2. The proposed sample reconstruction method based on phase space 
reconstruction

This study shows that the delay time 𝜏 of wind speed and wind 
shear coefficient calculated by the C–C method is 8, and the max-
imal Lyapunov exponent 𝜆 of both are greater than 0, 0.042 and 
0.037 respectively, which confirms that they are both chaotic time 
series. Considering the limitation of sliding window length, in order 
to avoid very low sampling rate, we choose 𝜏 = 4 as the delay time 
for phase space reconstruction. Packard’s coordinate delay phase space 
reconstruction method and Takens theorem both support this choice, 
pointing out that the choice of delay time 𝜏 will not affect the char-
acterization of the system’s dynamic properties. Taking wind speed as 
example, we use the coordinate delay method to reconstruct the phase 
space to show the global characteristics of the time series, recorded 
as 𝑥⃗𝑣, and process the time series in the sliding window by the 4-equal 
folding method to characterize the local characteristics, recorded as 𝑥𝑣.

𝑥⃗𝑣 =

⎡

⎢

⎢

⎢

⎢

𝑥⃗𝑣1 𝑥⃗𝑣1+𝜏 ⋯ 𝑥⃗𝑣1+(𝑚−1)𝜏
𝑥⃗𝑣2 𝑥⃗𝑣2+𝜏 ⋯ 𝑥⃗𝑣2+(𝑚−1)𝜏
𝑥⃗𝑣3 𝑥⃗𝑣3+𝜏 ⋯ 𝑥⃗𝑣3+(𝑚−1)𝜏
𝑣 𝑣 𝑣

⎤

⎥

⎥

⎥

⎥

,

⎣
𝑥⃗4 𝑥⃗4+𝜏 ⋯ 𝑥⃗4+(𝑚−1)𝜏⎦

5 
𝑥𝑣 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑣1 𝑥𝑣2 ⋯ 𝑥𝑣𝑛∕4
𝑥𝑣1+𝑛∕4 𝑥𝑣2+𝑛∕4 ⋯ 𝑥𝑣𝑛∕2
𝑥𝑣1+𝑛∕2 𝑥𝑣2+𝑛∕2 ⋯ 𝑥𝑣3𝑛∕4
𝑥𝑣1+3𝑛∕4 𝑥𝑣2+3𝑛∕4 ⋯ 𝑥𝑣𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (11)

The two dimensions of wind speed and wind shear coefficient are 
expanded to 16 dimensions to reveal the dynamic characteristics of 
wind speed and wind shear coefficient. 
⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,6
𝑥2,1 𝑥2,2 ⋯ 𝑥2,6
⋯ ⋯ ⋯ ⋯
𝑥16,1 𝑥16,2 ⋯ 𝑥16,6

⎤

⎥

⎥

⎥

⎥

⎦

= stack[𝑥⃗𝑣, 𝑥𝑣, 𝑥⃗𝛼 , 𝑥𝛼]. (12)

Fig.  5 shows the characteristics of the reconstructed data through 
recurrence plots, where Fig.  5(𝑎)–(𝑑) are based on the time-delay phase 
space reconstruction method, while Fig.  5(𝑒)–(ℎ) use the sequential 
folding method. The color bar on the right indicates the degree of 
similarity, from dark purple (0) to yellow (12). The higher the bright-
ness, the stronger the similarity of the data points. The bright lines and 
patches in the figure reveal the high-similarity areas, while the length 
of the diagonal indicates the degree of divergence of the trajectory. 
Random signals usually do not form long diagonals. The comparison of 
these recurrence plots characterizes the degree of pattern similarity of 
the signals. It can be observed that the sequence reconstructed in phase 
space Fig.  5(𝑎)–(𝑑) maintains the original pattern in the recurrence plot, 
while the sequence folded sequentially Fig.  5(𝑒)–(ℎ) mainly shows local 
features. The two methods effectively integrate the local and global 
features of the data.

3.3. Graph structure

Node features construction According to the proposed sample 
reconstruction method, the length of each row vector is 1/4 of the 
sliding window size. Taking the sliding window 24 used in this paper as 
an example, the length of each row vector after sample reconstruction 
is 6 samples. Thus, in order to prevent overfitting, 5 coefficients of 
first-order and second-order polynomials are used as data features to 
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Fig. 5. Graphical representation of the characteristics of the reconstructed data through recurrence plots. (a)–(d) represent the data pattern after phase space reconstruction, while 
(e)–(h) represent the data pattern after sequential folding.

Fig. 6. Graphical representation of multiple graph structure data built based on a sliding window, which contains 16 nodes and their connecting edges. The number sample 
represents the position of the sliding window.

Fig. 7. Illustration of the dynamic graph and proposed gated graph unit.
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simplify the model and maintain its generalization ability. 

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1,1 𝑓1,2 𝑓1,3 𝑓1,4 𝑓1,5
⋯ ⋯ ⋯ ⋯ ⋯
𝑓𝑟,1 𝑓𝑟,2 𝑓𝑟,3 𝑓𝑟,4 𝑓𝑟,5
⋯ ⋯ ⋯ ⋯ ⋯
𝑓16,1 𝑓16,2 𝑓16,3 𝑓16,4 𝑓16,5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑟 ∈ {1, 2,… , 16}. (13)

The basic idea of polynomial fitting is to fit a set of data points by 
the least squares method to find the polynomial function 𝑝(𝑛)(𝑥). 
𝑝(𝑛)(𝑥) = 𝑎(𝑛)0 + 𝑎(𝑛)1 𝑥 +⋯ + 𝑎(𝑛)𝑛 𝑥

𝑛, (14)

where 𝑎(𝑛)0 , 𝑎(𝑛)1 ,… , 𝑎(𝑛)𝑛  are the polynomial coefficients with the
highest order term is 𝑥𝑛. The polynomial coefficients of
[

𝑓𝑗,1 𝑓𝑗,2 𝑓𝑗,3 𝑓𝑗,4 𝑓𝑗,5
] are fitted respectively, denoted as

𝑝(𝑗𝑛)(𝑥). Then, the feature is calculated as
[

𝑓𝑗,1 ⋯ 𝑓𝑗,5
]

=
[

𝑎(𝑗1)0 𝑎(𝑗1)1 𝑎(𝑗2)0 𝑎(𝑗2)1 𝑎(𝑗2)2

]

,

𝑗 ∈ {1, 2,… , 16}. (15)

Laplace matrix construction Based on the above analysis, we 
constructed 16 variables in the sliding window and calculated the 
adjacency matrix A between them, where each element represents the 
Pearson correlation coefficient between the corresponding variables. 
Then, the Laplace matrix L is calculated using the adjacency matrix A.

In the adjacency matrix used in this paper, the elements at corre-
sponding positions use the correlation between pairs, which is mea-
sured by the Pearson correlation coefficient. This method does not 
require the use of prior knowledge to predefine the adjacency matrix, 
and it can be automatically constructed using the data in each sliding 
window.

Based on the node features and Laplace matrix, it is converted into 
graph structure data from time series. Fig.  6 shows multiple graph 
structure data built based on a sliding window, which contains 16 
nodes and their connecting edges. The node color is used to distinguish 
different nodes, while the color depth of the edge indicates the strength 
of the correlation between nodes. The graph contains 8 subgraphs, each 
of which represents a sliding window with an interval of 4 data points. 
From the changes in nodes and edges, it can be seen that although 
the graph structure remains unchanged, the connection properties of 
the edges change dynamically over time. It is worth noting that dy-
namically changing edges can better capture the complex relationships 
between nodes that change over time and improve the expressiveness 
of the model.

3.4. Gated graph unit

Gated linear units couples linear elements to gates, preserving the 
ability of nonlinear learning while enabling gradients to propagate 
across linear units [43]. Furthermore, the effectiveness of multiple 
variants of gated linear units was demonstrated [44]. This study uses a 
combination of graph convolution and gating mechanism, as shown in 
the Fig.  7. We compute the hidden layers ℎ as 
ℎ(𝐙) = GeLU(𝐙𝐖 + 𝐛) × tanh(𝐙𝐕 + 𝐜), (16)

where 𝐙 is the result of graph convolution, 𝐖, 𝐛, 𝐕, 𝐜 are the learned 
parameters, GeLU and tanh are the activation function and × is the 
element-wise product. It is worth noting that the highest-order term 
in our feature matrix is set to coincide with the order of the gating 
mechanism.

3.5. Cross convolution operation

The cross convolution operation is shown in the lower left corner of 
Fig.  4, and is formulated as 
𝐶𝑐𝑟𝑜𝑠𝑠 = Concat

([

ReLU 𝐶𝑠 ,ReLU
(

𝐶 𝑡
)])

, (17)
( )
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where 𝐶 is convolution operation, 𝐶𝑠 represents convolution across 
variables to capture spatial dependencies, while 𝐶 𝑡 represents within-
variable convolution to capture temporal dependencies. The vertically 
crossed 𝐶𝑠 and 𝐶 𝑡 are stacked as the feature map of data after sample 
reconstruction.

4. Experiment

4.1. Experimental configuration

The experiments were implemented in Tensorflow 2.10.0 and
Python 3.12, the hardware used includes Intel i7-13700k CPU, Nvidia 
Quadro A2000 GPU with CUDA 11.2 and 32 GB RAM. The number of 
channels and the size of the sliding window are both set to 24.

This baselines compared include not only classic models [45,46] 
such as the LSTM, gate recurrent unit (GRU) [47], temporal convolu-
tional network (TCN), BiLSTM, BiGRU, ConvLSTM and Transformer, 
but also recently proposed Fnet, Fastformer, SCINet and Mamba.

4.2. Description of dataset

The dataset used comes from a 48 MW wind farm at the National 
Offshore Wind Power Research and Test Base in Fujian, China. The 
data were collected from January 3 to February 21, 2022, for a total 
of 50 days, and the ratios of the training set, validation set, and test 
set were divided in order as 0.7, 0.1, and 0.2. Specifically, we used 
the measured wind speed at a height of 10 m and the calculated 
wind shear coefficient. Since this paper adopts a multi-task learning 
model, both the input variables and the output variables include wind 
speed and wind shear coefficient. The data were smoothed using the 
Savitzky–Golay filter to reflect the data pattern and ignore unnecessary 
fluctuations. Since the climate system is a typical nonlinear system with 
chaotic characteristics, this paper identifies it, and the specific results 
are reflected in the sample reconstruction method.

4.3. Ablation experiments

The ablation experiment calculated 4 groups in total, which are 
divided into two categories, one containing graph structure and sample 
reconstruction, and the other containing only sample reconstruction 
without graph structure. Specifically, in the first category, the decoder 
is replaced by GRU and LSTM respectively, labeled graph2 and graph3, 
in the second category, only the graph structure is removed, the de-
coder is unchanged, labeled graph4, and the graph structure is removed 
and the decoder is replaced by LSTM, labeled graph5.

4.4. Performance metrics

Three evaluation metrics were used to measure the accuracy of 
model prediction, including mean absolute error (MAE), root mean 
square error (RMSE), and coefficient of determination (𝑅2), which 
robust to outliers, penalizes large errors, explains variance proportion, 
respectively. The following formulas are given

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑡𝑖 − 𝑡′𝑖|| , RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝑡𝑖 − 𝑡′𝑖
)2,

𝑅2 = 1 −
∑𝑛
𝑖=1

(

𝑡𝑖 − 𝑡′𝑖
)2

∑𝑛
𝑖=1

(

𝑡𝑖 − 𝑡
)2
, (18)

where 𝑡𝑖 and 𝑡′𝑖 represent the true value and the predicted value of the 
time series, respectively. Besides, 𝑛 is the length of the time series, and 
𝑡 is the mean value of the time series. The values of MAE and RMSE are 
close to 0, and the values of 𝑅2 are close to 1, indicating that the model 
has high accuracy. In addition, the training and inference times of the 
proposed model are not the longest and within a reasonable range, so 
they are not discussed later.
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Table 2
Wind speed prediction results for different time spans (including 15 min, 30 min and 1 h).
 Model Time span
 15 min 30 min 1 h
 MAE RMSE 𝑅2 MAE RMSE 𝑅2 MAE RMSE 𝑅2  
 LSTM 0.144275 0.186662 0.991963 0.202700 0.261226 0.984232 0.331260 0.426524 0.957851  
 GRU 0.120642 0.155532 0.994420 0.186978 0.240395 0.986647 0.307549 0.397504 0.963391  
 TCN 0.191166 0.252493 0.985294 0.220449 0.290490 0.980501 0.359098 0.455913 0.951842  
 BiLSTM 0.199496 0.249583 0.985631 0.257991 0.324647 0.975646 0.385021 0.490120 0.944344  
 BiGRU 0.143399 0.183149 0.992262 0.201654 0.256771 0.984765 0.338409 0.429407 0.957279  
 ConvLSTM 0.167552 0.218774 0.988959 0.224041 0.293215 0.980134 0.355232 0.460609 0.950845  
 Transformer 0.252241 0.321043 0.976224 0.313544 0.399596 0.963103 0.437464 0.560159 0.927301  
 Fnet 0.255634 0.495122 0.943450 0.297001 0.408075 0.961521 0.426793 0.551388 0.929560  
 SCINet 2.108964 2.580756 −0.536384 2.099604 2.570542 −0.526839 2.100183 2.571625 −0.532213 
 Fastformer 0.151607 0.195878 0.991149 0.208779 0.270208 0.983129 0.332696 0.430194 0.957122  
 Mamba 0.251698 0.321284 0.976189 0.311709 0.397990 0.963399 0.435364 0.556203 0.928325  
 DGINet 0.051300 0.065637 0.999006 0.091662 0.116207 0.996880 0.170763 0.220009 0.988785  
5. Results and discussion

5.1. Wind speed prediction results for different time spans

Table  2 shows the difference in wind speed prediction performance 
between the proposed model and various baseline models at multiple 
time spans (including 15 min, 30 min and 1 h). In the baseline models, 
GRU stably achieved the best results in all three scenarios. In addi-
tion, for the suboptimal prediction results, BiGRU has the acceptable 
prediction performance in the 15-min and 30-min prediction scenarios. 
When the time span is increased to 1 h, things change and LSTM has 
a slightly better prediction accuracy. Nevertheless, the proposed model 
is far ahead in the three prediction indicators of MAE, RMSE and 𝑅2. 
Compared with the best results among various baseline models, the 
MAE of the proposed model decreased by 57.48%, 50.98%, 44.48% 
under the three prediction time spans. The RMSE decreased by 57.80%, 
51.66%, 44.65%, as for 𝑅2, and the deviation was reduced by 82.19%, 
76.63%, and 69.37% relative to the perfect prediction.

Fig.  8 illustrates the comparison between the predicted trajectory 
and the true value of the wind speed time series. The three rows in the 
figure show the prediction results for 15 min (figure (𝑎1)-(𝑎4)), 30 min 
(figure (𝑏1)-(𝑏4)) and 1 h (figure (𝑐1)-(𝑐4)). The proposed DGINet is 
compared with three baseline models, including GRU (a type of RNN), 
Fastformer (an attention model with linear computational complexity) 
and Mamba (a state-space model), furthermore, these three models 
have relatively the best prediction performance in their respective 
fields. All models perform well in 15-min prediction, but the accuracy 
decreases as the prediction time span increases, which is attributed 
to the increase in uncertainty. In particular, in the 1-h prediction, 
the prediction errors of DGINet, GRU, Fastformer and Mamba increase 
successively, showing more and more obvious burrs.

Fig.  9 shows the scatter plot of the wind speed time series prediction 
and true values, with the same layout as the prediction trajectory com-
parison figure. Ideally, the scatter points should be closely distributed 
along the ideal fitting line represented by the black solid line. In prac-
tice, the scatter points are distributed around the line, and the degree 
of deviation reflects the accuracy of the prediction. The scatter points 
in the figure are evenly distributed on both sides of the fitting line, 
indicating that there is no significant deviation between the predicted 
mean and the actual mean. As the prediction time span increases, 
the prediction performance of each model decreases. However, the 
horizontal comparison shows that the prediction value of the proposed 
model is closest to the ideal fitting line, indicating that its prediction 
effect is the best.

Fig.  10 shows the wavelet time-frequency analysis of the wind speed 
time series prediction error. The horizontal axis represents the length 
of the time series, the vertical axis represents the frequency, and the 
color depth corresponds to the energy intensity, blue is weak, and 
red is strong. As time goes on, the prediction error increases, but the 
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error energy of the proposed model is lower than that of the three 
comparison models in each time span. The analysis of the wavelet time-
frequency diagram not only reveals the changes in the prediction error, 
but also points out that the low-frequency error implies that there is 
room for improvement in pattern extraction, while the high-frequency 
error indicates the randomness of the time series, confirming that the 
model accurately captures the evolution pattern of the time series.

5.2. Wind shear coefficient prediction results for different time spans

Table  3 describes the performance differences of the proposed 
model and the baseline models in wind shear coefficient prediction 
under multiple time spans (including 15 min, 30 min, and 1 h). Among 
the baseline models, similar to the wind speed prediction results, GRU 
stably achieved the best results in all three scenarios. In addition, 
Fastformer achieved suboptimal results in the 15-min and 30-min 
prediction scenarios, which is not in harmony with the wind speed 
prediction. When the time span increases to 1 h, LSTM has slightly 
better prediction accuracy. Nevertheless, the proposed model has the 
lowest MAE, RMSE and the highest 𝑅2. Compared with the best results 
among the baseline models, the MAE of the proposed model in the 
three prediction time spans decreased by 32.77%, 33.15%, and 25.65%, 
respectively. The RMSE decreased by 30.59%, 27.25%, and 15.19%, 
respectively, and the deviations were reduced by 51.82%, 47.07%, and 
28.09%, respectively, relative to the perfect prediction. In addition, 
note that the prediction results of wind shear coefficient should be 
combined with the wind speed prediction results because they are 
jointly inferred in the multi-task learning model.

Fig.  11 shows the comparison between the predicted trajectory of 
the wind shear coefficient and the true value. The layout of each 
subgraph is consistent with the wind speed prediction subgraph. In the 
15-min and 30-min prediction, it can be seen that the prediction results 
of Mamba have shown obvious deviations, while the predicted values of 
other models are almost consistent with the actual values. As the time 
span increases, in the 1-h prediction, the prediction effect deteriorates 
further, and all models have different degrees of burrs. The proposed 
model is more consistent, followed by GRU and Fastformer, and Mamba 
has the largest error.

Fig.  12 is the scatter plot of the predicted value and the true 
value of the wind shear time series, and the layout is the same as the 
prediction trajectory comparison figure. The scatter points in the figure 
are distributed on both sides of the fitting line instead of concentrated 
on one side, indicating that there is no obvious deviation between the 
predicted mean and the actual mean. A notable phenomenon is that 
most of the scatter points are concentrated in the lower left corner. This 
is because the value of the wind shear coefficient is generally small, and 
the interval of the wind shear coefficient increase is an unconventional 
situation. In addition, another phenomenon is that the scatter points in 
the lower left corner are relatively concentrated, while the upper right 
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Fig. 8. Comparison of wind speed prediction track and actual test value.
Fig. 9. Scatter plot comparison between prediction track and actual test value of wind speed.
Table 3
Wind shear coefficient prediction results for different time spans (including 15 min, 30 min and 1 h).
 Model Time span
 15 min 30 min 1 h
 MAE RMSE 𝑅2 MAE RMSE 𝑅2 MAE RMSE 𝑅2  
 LSTM 0.001676 0.002683 0.989495 0.002458 0.003944 0.977247 0.004265 0.006930 0.929456 
 GRU 0.001245 0.001837 0.995077 0.001958 0.003090 0.986034 0.003945 0.006318 0.941365 
 TCN 0.004061 0.005218 0.960272 0.003791 0.005192 0.960564 0.006485 0.008851 0.884931  
 BiLSTM 0.002066 0.002989 0.986964 0.002769 0.004072 0.975739 0.004602 0.006920 0.929673  
 BiGRU 0.001659 0.002505 0.990847 0.002512 0.003913 0.977607 0.004407 0.006907 0.929938  
 ConvLSTM 0.002163 0.003011 0.986771 0.002902 0.004351 0.972309 0.004831 0.007729 0.912251  
 Transformer 0.005638 0.007492 0.918099 0.006329 0.008559 0.892849 0.007902 0.010899 0.825525  
 Fnet 0.012801 0.023488 0.194981 0.012814 0.022177 0.280560 0.013869 0.023255 0.205669  
 Fastformer 0.001588 0.002370 0.991806 0.002364 0.003611 0.980927 0.004277 0.006540 0.937186  
 SCINet 0.007999 0.009788 0.860212 0.008679 0.010604 0.835502 0.009279 0.011567 0.803483  
 Mamba 0.005645 0.007451 0.918990 0.006281 0.008442 0.895743 0.007645 0.010588 0.835350  
 DGINet 0.000837 0.001275 0.997628 0.001309 0.002248 0.992608 0.002933 0.005358 0.957835 
9 
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Fig. 10. Comparison of wavelet time-frequency graph of wind speed prediction errors.
Fig. 11. Comparison of wind shear coefficient prediction track and actual test value.
corner is relatively scattered. As the prediction time span increases, this 
phenomenon becomes more and more significant. This is because when 
the wind shear coefficient is stable, the uncertainty is small, which 
conforms to the long-term law, while the uncertainty is large during 
the time period when the wind shear coefficient changes dramatically.

Fig.  13 shows the results of the wavelet time-frequency analysis 
of the wind shear coefficient prediction error. The representation of 
its graphical elements is consistent with the wavelet time-frequency 
figure of wind speed. As time goes by, the prediction error continues to 
increase, but the error energy of the proposed model is lower than that 
of the three comparison models in each time span. It can be seen that 
the error energy of Mamba is significantly higher than others, which 
is consistent with the prediction trajectory and more intuitive. In the 
wavelet time-frequency figure of the proposed model, the error energy 
in the high-frequency interval is significantly lower than others, which 
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shows that the proposed model extracts the data pattern and reduces 
the randomness of the prediction error. In addition, there is a high-
energy area of prediction error on the right side of each subfigure, 
which is consistent with the interval of large changes in the wind shear 
coefficient. This means that when the uncertainty of the wind shear 
coefficient increases, the prediction error will increase accordingly.

5.3. Ablation experiment of wind speed and wind shear coefficient

Table  4 shows the difference in wind speed prediction performance 
between the ablation experiments at multiple time spans (including 
15 min, 30 min and 1 h). In the ablation experiments, the proposed 
model performs best on all time spans, with the lowest MAE and RMSE 
and the highest 𝑅2 value. When predicting for 15 min and 1 h, the 
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Fig. 12. Scatter plot comparison between prediction track and actual test value of wind shear coefficient.
Fig. 13. Comparison of wavelet time-frequency graph of wind shear coefficient prediction errors.
Table 4
Wind speed prediction results for ablation experiments with different time spans (including 15 min, 30 min and 1 h).
 Model Time span
 15 min 30 min 1 h
 MAE RMSE 𝑅2 MAE RMSE 𝑅2 MAE RMSE 𝑅2  
 DGINet 0.051300 0.065637 0.999006 0.091662 0.116207 0.996880 0.170763 0.220009 0.988785 
 graph2 0.110899 0.140680 0.995435 0.174715 0.220066 0.988810 0.245855 0.315730 0.976904  
 graph3 0.098474 0.124034 0.996451 0.128719 0.162765 0.993878 0.212346 0.272800 0.982758  
 graph4 0.099095 0.130965 0.996043 0.141838 0.186426 0.991969 0.227769 0.297832 0.979448  
 graph5 0.099182 0.125153 0.996387 0.135498 0.173600 0.993036 0.234535 0.298443 0.979364  
prediction performance of graph2, graph3, graph4 and graph5 is rela-
tively close, but all lower than the proposed algorithm. However, when 
predicting for 30 min, the performance of graph2 is significantly worse 
than the other three models. Subsequent comprehensive comparisons 
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across all time spans confirmed that graph2 consistently yielded the 
lowest prediction accuracy. Notably, its performance degradation was 
most pronounced at the 30-min mark. Compared with the proposed 
model, the only difference is that the decoder of graph2 is replaced 
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Table 5
Wind shear coefficient prediction results for ablation experiments with different time spans (including 15 min, 30 min and 1 h).
 Model Time span
 15 min 30 min 1 h
 MAE RMSE 𝑅2 MAE RMSE 𝑅2 MAE RMSE 𝑅2  
 DGINet 0.000837 0.001275 0.997628 0.001309 0.002248 0.992608 0.002933 0.005358 0.957835 
 graph2 0.001596 0.002112 0.993491 0.002401 0.003167 0.985329 0.002787 0.004739 0.967019 
 graph3 0.000999 0.001480 0.996803 0.001439 0.002385 0.991680 0.002854 0.005019 0.962996 
 graph4 0.001196 0.001828 0.995123 0.001638 0.002672 0.989555 0.003034 0.005227 0.959865 
 graph5 0.001314 0.001825 0.995142 0.001415 0.002435 0.991327 0.003197 0.005274 0.959139 
by GRU, which means that the proposed decoder module is sensible. 
Furthermore, the proposed scheme can be calculated in parallel, while 
GRU does not support parallel calculation. The observed trend across 
all models reveals a increase in prediction errors with longer prediction 
horizons. This because the inherent complexities of long-term wind 
prediction, linked to the uncertainty and non-stationarity characteristic 
of wind patterns over extended durations.

Table  5 shows the difference in wind shear prediction performance 
between the ablation experiments at multiple time spans (including 
15 min, 30 min and 1 h). Comprehensively analyzing Tables  5 and
4, due to the difference in magnitude, the prediction error of wind 
speed still occupies a large weight, while the prediction error of wind 
shear coefficient is relatively small. As can be seen from Table  5, the 
prediction results of wind shear coefficient at 15 min and 30 min show 
that the proposed model still has the lowest MAE and RMSE and the 
highest 𝑅2 value, which indicates that the proposed model has the 
highest prediction accuracy. However, the discordant part is that when 
the time span is extended to one hour, the prediction results of graph2 
and graph3 on wind shear coefficient actually exceed the proposed 
model. However, combined with the wind speed prediction results, 
the comprehensive prediction results of the proposed model are better. 
In addition, the encoders of graph2 and graph3 have not changed, 
which shows that the proposed sample reconstruction method and 
graph structure data processing method are effective and reasonable. A 
step back, the decoders of graph2 and graph3 do not support parallel 
computing, which is the focus of the significant promotion superiority 
of the proposed model.

6. Conclusion

This paper considers the time-varying characteristics of the wind 
shear coefficient, realizes the future prediction based on the surface 
wind speed and the time-varying wind shear coefficient, and can infer 
the future wind speed at a specified height. It is worth noting that this 
paper studies the problem of synchronous prediction of low-altitude 
wind speed and wind shear coefficient, two key variables in the vertical 
wind profile assessment, at multiple time scales for the first time. 
This study constructed an ideal multi-task learning model, strengthened 
the feature expression ability of the backbone network, and simplified 
the sub-networks for specific tasks. The model adopted an encoder–
decoder architecture, proposed a sample reconstruction method within 
a sliding window, and used improved gated graph unit to construct a 
graph feature encoder. At the same time, two-dimensional convolution 
was used to extract the spatial relationship feature encoding of 16-
dimensional sample features. The decoder used the output features of 
the encoder for interactive learning, and then inferred the time series 
prediction results of wind speed and wind shear coefficient through two 
neurons respectively. The proposed model shows excellent prediction 
performance in the time spans of 15 min, 30 min, and 1 h. Using MAE, 
RMSE, and R2 as evaluation indicators, the prediction error or devia-
tion from the perfect prediction of the proposed model is significantly 
reduced, verifying its potential for engineering application.

Overall, this study provides a new method for wind resource as-
sessment, which is expected to improve the accuracy of wind resource 
and wind power assessment. The limitation of this paper is that if the 
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evolution pattern of the wind shear coefficient is seriously inconsistent 
with the training stage, it will lead to large prediction errors. In the 
future, we will study the calibration and anomaly detection of wind 
shear coefficient, because the wind shear coefficient varies with seasons 
and climate, and excessive wind shear will have a negative impact on 
the normal operation of wind turbines. In addition, we will further 
explore model explainability [48] to improve reliability in practical 
applications.
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