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ABSTRACT

In the field of wind energy utilization, low-altitude wind speed and wind shear coefficient serve as pivotal
variables for wind speed extrapolation, and thus, the wind speed at hub height or specific height can be
effectively inferred. Although the power law model is widely used to describe wind profiles, traditional studies
often assume that the wind shear coefficient is constant, typically 1/7. This simplification ignores the dynamic
changes of the wind shear coefficient and potentially lead to prediction errors. To solve this problem, this study
proposed an innovative multi-task prediction method using dynamic graph interactive neural network(DGINet),
and the proposed method supports parallel computing. The novelty of this study lies in fully considering the
time-varying characteristics of the wind shear coefficient and can accurately predict the wind speed and wind
shear coefficient at the same time, so as to more accurately construct a vertical wind profile. The proposed
DGINet consists of idealized sub-networks simplified to individual neuron and backbone network adopting the
encoder-decoder architecture. The proposed encoder includes modified sample reconstruction strategy within
the sliding window, which expands the data dimension, and fuses the improved gated graph unit with the cross
convolution operator to model and perceive the multi-level correlation between samples. The experimental
results show that the proposed model can accurately and simultaneously predict wind speed and wind shear

coefficient within the prediction horizons of 15 min, 30 min and 1 h.

1. Introduction

In contrast to the environmentally detrimental and exhaustible na-
ture of fossil fuels, wind energy stands out as a favored, clean, and
renewable resource [1]. Wind power generation is the main form of
wind energy utilization and has grown rapidly in recent years. Notably,
the energy yield from wind turbines is intricately linked to the cube
of the wind speed [2]. Consequently, precise wind speed prediction
is crucial for assessing wind energy potential and integration into the
power grid [3].

Compared with ordinary wind speed prediction tasks, the difference
is that the wind turbine hub height needs to be considered, which
is usually between 50 and 150 m. Current research often relies on
wind speed at the hub height or the equivalent rotor wind speed for
wind power assessment [4]. Therefore, vertical wind patterns within
wind farms are crucial for wind energy research, as they show how
wind speed and direction change with height. However, measuring
these conditions at turbine hub height requires tall towers that are
costly to install [5] and maintain. From an engineering perspective,
the deployment and upkeep of numerous such towers present practical
inconveniences [6]. In a wind farm, a more feasible strategy involves
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the establishment of a single high wind tower complemented by several
lower auxiliary towers. In this way, the wind speed of the vertical
wind profile is extrapolated to the desired height using the wind shear
model and the lower-altitude wind speed [7]. Moreover, significant
wind shear can induce vibrations or destructive loads, leading to rotor
blade fatigue [8] and potentially reducing the lifespan of the wind tur-
bine [9]. Consequently, precise prediction of the wind shear coefficient
is crucial [10], as it is the only variable in the wind shear model.

In current research, power law or logarithmic law is generally used
to characterize the wind shear phenomenon [11]. According to the
literature summary [12,13], the power law stands out as the most
dependable and widely utilized model for extrapolating wind energy,
often employing a fixed empirical value of 1/7 or specific constant.
Current methodologies typically rely on such a fixed value to describe
vertical wind speed profiles. However, this approach inherently as-
sumes a constant mathematical relationship between wind speed and
height, which is often an oversimplification. Consequently, this limita-
tion, combined with the variability of actual wind patterns, can lead
to significant errors when applied universally [14]. Literatures indicate
that the wind shear coefficient is not static but changes dynamically
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with wind speed at lower altitudes and various meteorological condi-
tions [15], such as temperature gradients [16], time of day [8], and
atmospheric stability [17]. Engineers use predicted wind speed mea-
surements at lower heights along with a mathematical factor describing
how wind speeds change vertically to estimate full wind patterns.
Improving the accuracy of this vertical wind-speed relationship can
lead to more reliable evaluations of a site’s wind energy potential [18].
Table 1 provides an overview of the research pathways for wind speed
extrapolation [19]. Given the interdependence of wind speed and the
wind shear coefficient, both of which are critical prediction metrics,
simultaneous prediction of these variables would be highly beneficial.
Therefore, it is proposed to employ a multi-task learning approach
to concurrently predict wind speeds and shear coefficients. Then, the
problem becomes how to design a multi-task learning model to achieve
simultaneous prediction of wind speed and wind shear coefficient with
high accuracy.

This approach is particularly well-suited for the study’s applica-
tion because, in the field of wind power prediction, multi-task learn-
ing [20] has already demonstrated its effectiveness in addressing mul-
tiple related tasks simultaneously. With the help of sharing represen-
tations [21], it enhances the model’s performance across each task,
and the exploitation of inter-variable correlations effectively relieves
the challenge of data scarcity [22-25]. Multi-task learning facilitates
the joint prediction [26] of wind speed and wind power across various
locations [27], taking into account spatial correlations [28]. Further-
more, for multivariate tasks, which include temperature, wind speed,
and air pressure, multi-task learning can identify the correlations and
interactions in the evolutionary patterns of different variables, enabling
synchronous meteorological prediction [29]. Not only limited to meteo-
rological information, the interdependencies and coupling information
between wind and photovoltaic power outputs within the same region
can also achieve complementary and synchronous prediction [30].
However, there is still a knowledge gap in the multi-task prediction
of wind speed and wind shear coefficient. The limitations of existing
research are not only this, but also the main approach in wind speed
prediction, due to the limited number of variables available, has been to
focus on single-variable prediction, and the recurrent neural networks
widely used for prediction do not support parallel computing. More im-
portantly, despite there are many studies on wind shear phenomenon,
there is a notable scarcity of studies dedicated to the dynamic tracking
and prediction of the wind shear coefficient.

To address this identified gap, particularly the scarcity of dynamic
wind shear coefficient prediction research, this study constructs a multi-
task learning model. This model simultaneously predicts wind speed
and the wind shear coefficient, thereby overcoming the challenge of
coupling between wind shear phenomena and wind speed. Its advan-
tage lies in strengthening the feature expression ability of the backbone
network and simplifying the sub-network of a specific task into a
single neuron, avoiding the problem of task-independent modeling
caused by complex sub-networks, and realizing the ideal form of multi-
task learning. The model was structured around an encoder-decoder
architecture. Initially, a novel sample reconstruction method within the
sliding window was proposed, tailored to meet the demands of dynamic
graph neural network processing. This method leverages the principles
of phase space reconstruction, effectively elevating the original two-
dimensional variables to a 16-dimensional space through time delay
reconstruction and time series order folding techniques. On this ba-
sis, the reconstructed 16-dimensional sample features were treated as
nodes, and the node features were represented by low-order polynomial
coefficients. Furthermore, the graph feature encoder was constructed
using improved gated graph unit, and the spatial relationship feature
between reconstructed data structure of the 16-dimensional sample
features was extracted using a set of cross convolution operation.
Afterwards, the graph feature encoding and the spatial relationship
feature encoding were integrated. In the decoder component, we have
simplified the sample convolution and interaction network, eliminating
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downsampling and directly employing the encoder’s output features for
interactive learning. Due to the reduction of information loss compared
to the original structure, the modeling accuracy has been improved.
Finally, the model yields time series prediction results for wind speed
and wind shear coefficient through two distinct neurons, respectively.
The accuracy of the proposed method was verified through real-world
wind speed and wind shear coefficient, and its potential for engineering
applications was demonstrated by high-precision prediction for 15 min,
30 min and 1 h.
The contributions of this paper are as follows:

+ A multi-task learning method based on dynamic graph interactive
neural network was proposed for the simultaneous prediction of
wind speed and time-varying wind shear coefficient, which helps
to describe the wind profile. The idealized multi-task learning
concept was improved, information mining was mainly com-
pleted through the backbone network, and each sub-network
corresponding to a specific task was simplified to a single neuron.
A new sample reconstruction method was designed, which in-
tegrates phase space reconstruction and time series sequential
folding, and expands the two-dimensional variables to 16 dimen-
sions, taking into account the correlation of multiple spatial spans
and time delay effects.

A gated graph unit was proposed, which dynamically selects and
controls the flow of information through a gating mechanism, so
that it can capture complex patterns. Correspondingly, the graph
feature used a feature representation method of a combination of
low-order polynomial coefficients.

The rest of the paper is organized as follows: Section 2 describes the
problem and the method related. Section 3 elaborates on the proposed
model. Section 4 describes the experimental design and the dataset.
Section 5 presents the analysis of the experimental results. Finally,
Section 6 concludes the paper and discusses future research plans.

2. Preliminary and problem formulation
2.1. Wind shear model

In wind farms, since it is costly and difficult to install and maintain
multiple wind towers directly at the hub height, a main wind tower
is usually used in conjunction with several auxiliary wind towers. As
shown in Fig. 1, the auxiliary wind towers adjacent to the wind turbines
can provide more accurate wind speed data. However, the wind speed
at the hub height needs to be obtained by extrapolation. The power law
method is a commonly used wind speed extrapolation method, and its
accuracy depends on the wind shear coefficient.

The power law model is also called the Hellman exponential law
model [18]

_ In(vy/v))

hy «
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where v, and v, are the wind speeds at 4, and A, at different heights,
respectively. « is the Hellman exponential, also known as the wind
shear coefficient.

Considering that the wind shear coefficient is affected by atmo-
spheric stability and temperature gradient, it can be assumed to be
constant within the same wind farm in a short period. Based on this,
combined with the measured wind shear coefficient and the wind speed
at a height of 10 m, we can construct a vertical wind profile model.

Fig. 2 shows the contour map of the daily variation of wind speed
and wind shear coefficient. It can be seen from the figure that the wind
speed is higher around 06:00 and 18:00 every day, and the wind shear
coefficient is also relatively large during these two periods. Although
the difference in wind speed during the day is not large, the pattern
in wind shear coefficient shows significant temporal variability, which
brings challenges to accurate prediction.

(€Y
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Table 1
The literature review of wind speed extrapolation.
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Title Author Source

Description

Ebubekir Firtin
(2011)
Giovanni
Gualtieri (2012)

Investigation of wind shear coefficients and their
effect on electrical energy generation [14]
Methods to extrapolate wind resource to the
turbine hub height based on power law: A 1-h
wind speed vs. Weibull distribution extrapolation
comparison [11]

Vertical extrapolation of wind speed using artificial
neural network hybrid system [15]

Md. Saiful Islam
(2017)

Use of spatio-temporal calibrated wind shear Jiale Li (2018)
model to improve accuracy of wind resource
assessment [18]

A comprehensive review on wind resource
extrapolation models applied in wind energy [12]

Giovanni
Gualtieri (2019)
reviews

A temporal model for vertical extrapolation of Paola Crippa

Applied energy

Renewable energy

Neural computing
and applications

Applied energy
Renewable and
sustainable energy

Applied energy

Wind data collected in Balikesir from October 2008 to September 2009, has
been used to show the effects of wind shear coefficient on energy production
A comparison is proposed between these two PL-based extrapolation
approaches to the turbine hub height

Proposes two artificial neural network hybrid system-based models using
genetic algorithm and particle swarm optimization for vertical extrapolation
of wind speed

The accuracy and performance of incorporating site-specific wind shear model
calibration to predict the wind energy resource is evaluated, where six
different methods are compared

A review spanning across a 40-year period (1978-2018) and has been
addressed on theoretical and empirical wind resource extrapolation models
applied in wind energy

Develop a new model for wind shear coefficient which is able to capture

wind speed and wind energy assessment [13] (2021) hourly variability across a range of geographic/topographic features
Main )
wind tower Diameter
Wind speed v2 .

: Wind shear | __ Hub height

Height hy wind speed
o= logg(va/v1)
logy(ha/ha)

Auxiliary Auxiliary

wind tower wind tower

Long distance

Fig. 1. Illustration of the wind profile and distribution of wind towers at a wind farm.
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Fig. 2. Graphical representation of the contour map of the daily variation of wind speed and wind shear coefficient.

2.2. Problem formulation

Wind speed x* and wind shear coefficient x° are key variables
for constructing wind profiles. If prediction models are established for
them separately, they cannot be calculated synchronously, and the
computational cost and time cost are higher than those of a unified

model. Therefore, in this paper, multi-task learning can simultaneously
perform these two related prediction tasks {T,-}im, learn a set of
functions F(x) = { f,-(x)}f:L2 for the two variables, and the prediction
result §; = F (x;) can approach the actual result y;. The multi-task loss
Ly is @ weighted combination of L;, where L; is the loss function

corresponding to the prediction task.
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Fig. 3. Illustration of the SCINet model.

2.3. Graph neural network

As a data structure, graph can effectively model complex relation-
ships between symbols, surpassing the representation capabilities of
traditional data [31]. Whether it is a natural social network graph or
the conversion of data into a graph form, such as the spatial layout
of traffic flow [32], this structure can reveal deeper data connections.
Therefore, graph neural networks that focus on processing dependency
relationships [33] of graph-structured data are gradually being widely
used in the field of natural sciences [34].

Generally, G = (V,E, A) is used to represent a graph [35], where
V € RV represents the nodes, E represents the edges between different
nodes, A € RV*N represents the adjacency matrix, and N is the number
of nodes. Nodes V have two attributes, one is its own data, and the
other is the feature F of nodes V. Assuming that each node collects d-
dimensional features, then F € RV*¢, Sometimes, the adjacency matrix
A is replaced by the Laplacian matrix L[36], and

L=D-A, 2

Dy = Z Aij' 3

In tjhe above concept, nodes and edges do not change over time,
which is called static graph [37]. When the graph structure or edges
change over time, the dynamic graph G(r) = (V (1), E(t;), A(t)) can be
viewed as a series of static graphs that model spatial relationships at
each time step 7, [38].

Graph convolution is suitable for modeling spatial relationships
[39], and activation function ¢ is added to nonlinearize the graph
convolutional model [40]

HD =0(D_%/§D_%H(’)W(’)), “4)
where A = A + Iy is the adjacency matrix with added self-connections
Iy, Dy = X, A, W is trainable weight matrix. H") € RV*P is the
matrix of activations in the /th layer [41].

For a two-layer graph convolutional network with a ReLU activation
function, the forward model can be written as

Z = f(X,A)=ReLU (AReLU (AXW©@) w®), 5)

PO B
where A= D 2AD™2.

[NIE

2.4. SCINet

The SCINet computing framework [42] shown in Fig. 3 was pro-
posed in 2022. As can be seen in Fig. 3(c), by stacking K layers of
calculations, and the backbone architecture of the framework adopts a
binary tree structure, as shown in Fig. 3(b). SCI-Block, as the core mod-
ule of SCINet, is reflected in Fig. 3(«). In this module, the input feature

F is evenly divided into two sub-features F ,, and F,,,, through the
Spliting operation, achieving a reduction in temporal resolution while
retaining most of the original information. In order to compensate for
the information loss in the downsampling process, an interactive learn-
ing strategy is adopted between the two sub-sequences, and information
complementation is achieved through the Interactive-learning operation.

Next, different convolution kernels are applied to F,,,, and F,,,,
respectively. Then, an Interactive-learning strategy is described, which
achieves information interchange by learning affine transformation
parameters.

Specifically, 4 different convolution operations are predefined,
namely ¢, v, p and #. F,,,, and F,,, are transformed to hidden states
with ¢ and y, respectively. Further, the hidden states transformed to

the formats of exp, and multiply by F,,, and F,,,, obtain F{  and

Ff,dd- Here, multiply or x refers to the element-wise production.

F. 14 = Foaa X exp(@F o)), 6)

Fz:;en =Fpen X exp(y (F,40)). @
Similarly, F... and Ff) 1q 1€ transformed to hidden states with p and

1, respectively.

Foaa = Foag + PEopen): (8)

F;ven = Ffzven - rl(F(S)dd)' 9)

3. Dynamic graph interactive neural network
3.1. Overall structure

In this study, Dynamic graph interactive neural network(DGINet)
was proposed to solve the problem of synchronous prediction of wind
speed and time-varying wind shear coefficient {77}[2:]42, as shown
in Fig. 4. The proposed model used a multi-task learning modeling
framework, and the backbone network of multi-task learning was an
encoder—-decoder architecture.

The encoder input includes three groups, the node data matrix, the
node feature matrix and the Laplacian matrix. The feature matrix and
the Laplacian matrix are calculated by the proposed gated graph unit,
and the data matrix is calculated by the proposed cross convolution.
After that, the feature maps calculated by the two are added together
to form the feature encoding of the encoder.

In the decoder, we use a simplified SCI-Block computing architec-
ture with three differences. (1) Instead of data segmentation, we use
tensor replication to assign feature codes to F,,;, and F,,,, respectively,
which avoids information loss during downsampling. (2) No exp pro-
cessing is performed to simplify the calculation. (3) The final output
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the wind speed and wind shear coefficient studied in this paper is too
large, more emphasis is placed on the wind shear coefficient in the loss
function.

n n PR 2

Lppusi = YXL{+AXLy = yx% ; (sp,- - s/ﬁ,-)2+/l><% g{ (sh,- - sh,-) , (10)
where sp; and sh; represent the actual wind speed and wind shear
coefficient, respectively. sp; and s/\h, represent the predicted wind speed
and wind shear coefficient, respectively. L, and L, represent the loss
function of the wind speed and wind shear coefficient, respectively.
y =0.2 and A = 0.8 are hyperparameters used.

In addition, the Adam optimizer was used to update parameters
during training.

3.2. The proposed sample reconstruction method based on phase space
reconstruction

This study shows that the delay time r of wind speed and wind
shear coefficient calculated by the C-C method is 8, and the max-
imal Lyapunov exponent A of both are greater than 0, 0.042 and
0.037 respectively, which confirms that they are both chaotic time
series. Considering the limitation of sliding window length, in order
to avoid very low sampling rate, we choose r = 4 as the delay time
for phase space reconstruction. Packard’s coordinate delay phase space
reconstruction method and Takens theorem both support this choice,
pointing out that the choice of delay time z will not affect the char-
acterization of the system’s dynamic properties. Taking wind speed as
example, we use the coordinate delay method to reconstruct the phase
space to show the global characteristics of the time series, recorded
as XV, and process the time series in the sliding window by the 4-equal
folding method to characterize the local characteristics, recorded as xV.

v U

2U
1 Yigr Xl4m=1)z
22U 2U 22U
o _ %2 *oae Xom=1)e
S ] ’
3 3+7 3+(m-1)t
20U 22U 22U
X4 Xgyr Xgtm-D)r

The two dimensions of wind speed and wind shear coefficient are
expanded to 16 dimensions to reveal the dynamic characteristics of
wind speed and wind shear coefficient.

X1,1 X120 X6

X X X - ) =

21 22 26 | = stack[X*, x*, X%, x“]. 12)
X16,1 X162 X16,6

Fig. 5 shows the characteristics of the reconstructed data through
recurrence plots, where Fig. 5(a)-(d) are based on the time-delay phase
space reconstruction method, while Fig. 5(e)-(h) use the sequential
folding method. The color bar on the right indicates the degree of
similarity, from dark purple (0) to yellow (12). The higher the bright-
ness, the stronger the similarity of the data points. The bright lines and
patches in the figure reveal the high-similarity areas, while the length
of the diagonal indicates the degree of divergence of the trajectory.
Random signals usually do not form long diagonals. The comparison of
these recurrence plots characterizes the degree of pattern similarity of
the signals. It can be observed that the sequence reconstructed in phase
space Fig. 5(a)-(d) maintains the original pattern in the recurrence plot,
while the sequence folded sequentially Fig. 5(e)—(#) mainly shows local
features. The two methods effectively integrate the local and global
features of the data.

3.3. Graph structure

Node features construction According to the proposed sample
reconstruction method, the length of each row vector is 1/4 of the
sliding window size. Taking the sliding window 24 used in this paper as
an example, the length of each row vector after sample reconstruction
is 6 samples. Thus, in order to prevent overfitting, 5 coefficients of
first-order and second-order polynomials are used as data features to
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simplify the model and maintain its generalization ability.
S N Nz fia Sis
F= fr,l fr,2 fr,} fr,4 fr,5 ,rE{l,Z,...,l()}. (13)
Sisx  Jiea  Sies  Jiea  JSies
The basic idea of polynomial fitting is to fit a set of data points by
the least squares method to find the polynomial function p®(x).

(n)

p(")(x) = ag') +a x++ afq”)x", 14)

where ag"),a(l"),...,af,") are the polynomial coefficients with the

highest order term is x". The polynomial coefficients of
[fin fi2 fis fia f;s] are fitted respectively, denoted as
pUM(x). Then, the feature is calculated as

. Z[ 00 v G 0 G2
[ - f,—,s]—[ao G G 4 H )

je{L2,...,16}. 15)

Laplace matrix construction Based on the above analysis, we
constructed 16 variables in the sliding window and calculated the
adjacency matrix A between them, where each element represents the
Pearson correlation coefficient between the corresponding variables.
Then, the Laplace matrix L is calculated using the adjacency matrix A.

In the adjacency matrix used in this paper, the elements at corre-
sponding positions use the correlation between pairs, which is mea-
sured by the Pearson correlation coefficient. This method does not
require the use of prior knowledge to predefine the adjacency matrix,
and it can be automatically constructed using the data in each sliding
window.

Based on the node features and Laplace matrix, it is converted into
graph structure data from time series. Fig. 6 shows multiple graph
structure data built based on a sliding window, which contains 16
nodes and their connecting edges. The node color is used to distinguish
different nodes, while the color depth of the edge indicates the strength
of the correlation between nodes. The graph contains 8 subgraphs, each
of which represents a sliding window with an interval of 4 data points.
From the changes in nodes and edges, it can be seen that although
the graph structure remains unchanged, the connection properties of
the edges change dynamically over time. It is worth noting that dy-
namically changing edges can better capture the complex relationships
between nodes that change over time and improve the expressiveness
of the model.

3.4. Gated graph unit

Gated linear units couples linear elements to gates, preserving the
ability of nonlinear learning while enabling gradients to propagate
across linear units [43]. Furthermore, the effectiveness of multiple
variants of gated linear units was demonstrated [44]. This study uses a
combination of graph convolution and gating mechanism, as shown in
the Fig. 7. We compute the hidden layers & as

h(Z) = GeLU(ZW + b) X tanh(ZV + c), (16)

where Z is the result of graph convolution, W, b, V, ¢ are the learned
parameters, GeLU and tanh are the activation function and x is the
element-wise product. It is worth noting that the highest-order term
in our feature matrix is set to coincide with the order of the gating
mechanism.

3.5. Cross convolution operation

The cross convolution operation is shown in the lower left corner of
Fig. 4, and is formulated as

C*7%%% = Concat ([ReLU (C*),ReLU (C")]), a7)
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where C is convolution operation, C* represents convolution across
variables to capture spatial dependencies, while C’ represents within-
variable convolution to capture temporal dependencies. The vertically
crossed C* and C" are stacked as the feature map of data after sample
reconstruction.

4. Experiment
4.1. Experimental configuration

The experiments were implemented in Tensorflow 2.10.0 and
Python 3.12, the hardware used includes Intel i7-13700k CPU, Nvidia
Quadro A2000 GPU with CUDA 11.2 and 32 GB RAM. The number of
channels and the size of the sliding window are both set to 24.

This baselines compared include not only classic models [45,46]
such as the LSTM, gate recurrent unit (GRU) [47], temporal convolu-
tional network (TCN), BiLSTM, BiGRU, ConvLSTM and Transformer,
but also recently proposed Fnet, Fastformer, SCINet and Mamba.

4.2. Description of dataset

The dataset used comes from a 48 MW wind farm at the National
Offshore Wind Power Research and Test Base in Fujian, China. The
data were collected from January 3 to February 21, 2022, for a total
of 50 days, and the ratios of the training set, validation set, and test
set were divided in order as 0.7, 0.1, and 0.2. Specifically, we used
the measured wind speed at a height of 10 m and the calculated
wind shear coefficient. Since this paper adopts a multi-task learning
model, both the input variables and the output variables include wind
speed and wind shear coefficient. The data were smoothed using the
Savitzky-Golay filter to reflect the data pattern and ignore unnecessary
fluctuations. Since the climate system is a typical nonlinear system with
chaotic characteristics, this paper identifies it, and the specific results
are reflected in the sample reconstruction method.

4.3. Ablation experiments

The ablation experiment calculated 4 groups in total, which are
divided into two categories, one containing graph structure and sample
reconstruction, and the other containing only sample reconstruction
without graph structure. Specifically, in the first category, the decoder
is replaced by GRU and LSTM respectively, labeled graph2 and graph3,
in the second category, only the graph structure is removed, the de-
coder is unchanged, labeled graph4, and the graph structure is removed
and the decoder is replaced by LSTM, labeled graph5.

4.4. Performance metrics

Three evaluation metrics were used to measure the accuracy of
model prediction, including mean absolute error (MAE), root mean
square error (RMSE), and coefficient of determination (R?), which
robust to outliers, penalizes large errors, explains variance proportion,
respectively. The following formulas are given

n
1 '

MAE= -3 |;;~1]|. RMSE=

i=1

2

Y (6—1)

27
i (6=1)
where 1, and 7] represent the true value and the predicted value of the
time series, respectively. Besides, n is the length of the time series, and
f is the mean value of the time series. The values of MAE and RMSE are
close to 0, and the values of R? are close to 1, indicating that the model
has high accuracy. In addition, the training and inference times of the

proposed model are not the longest and within a reasonable range, so
they are not discussed later.

R’=1- (18)
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Table 2
Wind speed prediction results for different time spans (including 15 min, 30 min and 1 h).
Model Time span
15 min 30 min 1h
MAE RMSE R? MAE RMSE RrR? MAE RMSE R?
LSTM 0.144275 0.186662 0.991963 0.202700 0.261226 0.984232 0.331260 0.426524 0.957851
GRU 0.120642 0.155532 0.994420 0.186978 0.240395 0.986647 0.307549 0.397504 0.963391
TCN 0.191166 0.252493 0.985294 0.220449 0.290490 0.980501 0.359098 0.455913 0.951842
BiLSTM 0.199496 0.249583 0.985631 0.257991 0.324647 0.975646 0.385021 0.490120 0.944344
BiGRU 0.143399 0.183149 0.992262 0.201654 0.256771 0.984765 0.338409 0.429407 0.957279
ConvLSTM 0.167552 0.218774 0.988959 0.224041 0.293215 0.980134 0.355232 0.460609 0.950845
Transformer 0.252241 0.321043 0.976224 0.313544 0.399596 0.963103 0.437464 0.560159 0.927301
Fnet 0.255634 0.495122 0.943450 0.297001 0.408075 0.961521 0.426793 0.551388 0.929560
SCINet 2.108964 2.580756 —0.536384 2.099604 2.570542 —0.526839 2.100183 2.571625 —-0.532213
Fastformer 0.151607 0.195878 0.991149 0.208779 0.270208 0.983129 0.332696 0.430194 0.957122
Mamba 0.251698 0.321284 0.976189 0.311709 0.397990 0.963399 0.435364 0.556203 0.928325
DGINet 0.051300 0.065637 0.999006 0.091662 0.116207 0.996880 0.170763 0.220009 0.988785

5. Results and discussion
5.1. Wind speed prediction results for different time spans

Table 2 shows the difference in wind speed prediction performance
between the proposed model and various baseline models at multiple
time spans (including 15 min, 30 min and 1 h). In the baseline models,
GRU stably achieved the best results in all three scenarios. In addi-
tion, for the suboptimal prediction results, BiGRU has the acceptable
prediction performance in the 15-min and 30-min prediction scenarios.
When the time span is increased to 1 h, things change and LSTM has
a slightly better prediction accuracy. Nevertheless, the proposed model
is far ahead in the three prediction indicators of MAE, RMSE and R?.
Compared with the best results among various baseline models, the
MAE of the proposed model decreased by 57.48%, 50.98%, 44.48%
under the three prediction time spans. The RMSE decreased by 57.80%,
51.66%, 44.65%, as for R?, and the deviation was reduced by 82.19%,
76.63%, and 69.37% relative to the perfect prediction.

Fig. 8 illustrates the comparison between the predicted trajectory
and the true value of the wind speed time series. The three rows in the
figure show the prediction results for 15 min (figure (a1)-(a4)), 30 min
(figure (b1)-(b4)) and 1 h (figure (c1)-(c4)). The proposed DGINet is
compared with three baseline models, including GRU (a type of RNN),
Fastformer (an attention model with linear computational complexity)
and Mamba (a state-space model), furthermore, these three models
have relatively the best prediction performance in their respective
fields. All models perform well in 15-min prediction, but the accuracy
decreases as the prediction time span increases, which is attributed
to the increase in uncertainty. In particular, in the 1-h prediction,
the prediction errors of DGINet, GRU, Fastformer and Mamba increase
successively, showing more and more obvious burrs.

Fig. 9 shows the scatter plot of the wind speed time series prediction
and true values, with the same layout as the prediction trajectory com-
parison figure. Ideally, the scatter points should be closely distributed
along the ideal fitting line represented by the black solid line. In prac-
tice, the scatter points are distributed around the line, and the degree
of deviation reflects the accuracy of the prediction. The scatter points
in the figure are evenly distributed on both sides of the fitting line,
indicating that there is no significant deviation between the predicted
mean and the actual mean. As the prediction time span increases,
the prediction performance of each model decreases. However, the
horizontal comparison shows that the prediction value of the proposed
model is closest to the ideal fitting line, indicating that its prediction
effect is the best.

Fig. 10 shows the wavelet time-frequency analysis of the wind speed
time series prediction error. The horizontal axis represents the length
of the time series, the vertical axis represents the frequency, and the
color depth corresponds to the energy intensity, blue is weak, and
red is strong. As time goes on, the prediction error increases, but the

error energy of the proposed model is lower than that of the three
comparison models in each time span. The analysis of the wavelet time-
frequency diagram not only reveals the changes in the prediction error,
but also points out that the low-frequency error implies that there is
room for improvement in pattern extraction, while the high-frequency
error indicates the randomness of the time series, confirming that the
model accurately captures the evolution pattern of the time series.

5.2. Wind shear coefficient prediction results for different time spans

Table 3 describes the performance differences of the proposed
model and the baseline models in wind shear coefficient prediction
under multiple time spans (including 15 min, 30 min, and 1 h). Among
the baseline models, similar to the wind speed prediction results, GRU
stably achieved the best results in all three scenarios. In addition,
Fastformer achieved suboptimal results in the 15-min and 30-min
prediction scenarios, which is not in harmony with the wind speed
prediction. When the time span increases to 1 h, LSTM has slightly
better prediction accuracy. Nevertheless, the proposed model has the
lowest MAE, RMSE and the highest R?>. Compared with the best results
among the baseline models, the MAE of the proposed model in the
three prediction time spans decreased by 32.77%, 33.15%, and 25.65%,
respectively. The RMSE decreased by 30.59%, 27.25%, and 15.19%,
respectively, and the deviations were reduced by 51.82%, 47.07%, and
28.09%, respectively, relative to the perfect prediction. In addition,
note that the prediction results of wind shear coefficient should be
combined with the wind speed prediction results because they are
jointly inferred in the multi-task learning model.

Fig. 11 shows the comparison between the predicted trajectory of
the wind shear coefficient and the true value. The layout of each
subgraph is consistent with the wind speed prediction subgraph. In the
15-min and 30-min prediction, it can be seen that the prediction results
of Mamba have shown obvious deviations, while the predicted values of
other models are almost consistent with the actual values. As the time
span increases, in the 1-h prediction, the prediction effect deteriorates
further, and all models have different degrees of burrs. The proposed
model is more consistent, followed by GRU and Fastformer, and Mamba
has the largest error.

Fig. 12 is the scatter plot of the predicted value and the true
value of the wind shear time series, and the layout is the same as the
prediction trajectory comparison figure. The scatter points in the figure
are distributed on both sides of the fitting line instead of concentrated
on one side, indicating that there is no obvious deviation between the
predicted mean and the actual mean. A notable phenomenon is that
most of the scatter points are concentrated in the lower left corner. This
is because the value of the wind shear coefficient is generally small, and
the interval of the wind shear coefficient increase is an unconventional
situation. In addition, another phenomenon is that the scatter points in
the lower left corner are relatively concentrated, while the upper right



K. Fu and Z. Ren

Wind speed (m/s) Wind speed (m/s)

Wind speed (m/s)

Wind speed (m/s) Wind speed (m/s)

Wind speed (m/s)

Information Fusion 125 (2026) 103478

16 16 16 16
test value test value test value test value
prediction prediction prediction prediction
12 12 12 12
8 8 8
4 4 4 4
0 480 %0 0 480 %0 0 480 %0 0 480 960
(al) GRU- 15 minute (a2) Fastformer- 15 minute (a3) Mamba- 15 minute (a4) DGINet- 15 minute
16 16 16 16
test value test value test value test value
prediction prediction prediction prediction
12 T 12 12 12
84" 8 8 8
4 4 4 4
480 960 480 960 480 960 480 960
(b1) GRU- 30 minute (b2) Fastformer- 30 minute (b3) Mamba- 30 minute (b4) DGINet- 30 minute
16 16 16 16
test value test value test value test value
prediction prediction prediction prediction
12 M 12 12 12
84" 8 8 8
4 4 4 4
0 480 %0 0 480 %0 0 480 %0 0 480 960
Sample Sample Sample Sample
(c1) GRU- 60 minute (¢2) Fastformer- 60 minute (c3) Mamba- 60 minute (c4) DGINet- 60 minute
Fig. 8. Comparison of wind speed prediction track and actual test value.
14 14 14 14
—— theoretical —— theoretical —— theoretical —— theoretical
prediction prediction prediction prediction
; ; ; k]
z 2 E 2
test value test value test value test value
4 4 4 4
4 9 14 4 9 14 4 9 44 9 14
(al) GRU- 15 minute (a2) Fastformer- 15 minute (a3) Mamba- 15 minute (a4) DGINet- 15 minute
14 14 14 14
—— theoretical —— theoretical —— theoretical —— theoretical
prediction prediction prediction prediction
z 2 E z
test value test value test value test value
4 4 4 4
4 9 4 4 9 14 4 9 4 4 9 14
(51> GRU- 30 minute (52) Fastformer- 30 minute (53) Mamba- 30 minute (b4) DGINet- 30 minute
14 14 14 14
—— theoretical —— theoretical —— theoretical —— theoretical
prediction prediction prediction prediction
of 8 o1 1 5| 3 5| 8
z 2 z z
> test value test value test value test value
4 4 4 4
4 9 14 4 9 14 4 9 4 4 9 14
‘Wind speed (m/s) Wind speed (m/s) ‘Wind speed (m/s) Wind speed (m/s)

(c1) GRU- 60 minute

(c2) Fastformer- 60 minute

(¢3) Mamba- 60 minute

(c4) DGINet- 60 minute

Fig. 9. Scatter plot comparison between prediction track and actual test value of wind speed.

Table 3
Wind shear coefficient prediction results for different time spans (including 15 min, 30 min and 1 h).
Model Time span
15 min 30 min 1h
MAE RMSE R? MAE RMSE R? MAE RMSE R?
LSTM 0.001676 0.002683 0.989495 0.002458 0.003944 0.977247 0.004265 0.006930 0.929456
GRU 0.001245 0.001837 0.995077 0.001958 0.003090 0.986034 0.003945 0.006318 0.941365
TCN 0.004061 0.005218 0.960272 0.003791 0.005192 0.960564 0.006485 0.008851 0.884931
BiLSTM 0.002066 0.002989 0.986964 0.002769 0.004072 0.975739 0.004602 0.006920 0.929673
BiGRU 0.001659 0.002505 0.990847 0.002512 0.003913 0.977607 0.004407 0.006907 0.929938
ConvLSTM 0.002163 0.003011 0.986771 0.002902 0.004351 0.972309 0.004831 0.007729 0.912251
Transformer 0.005638 0.007492 0.918099 0.006329 0.008559 0.892849 0.007902 0.010899 0.825525
Fnet 0.012801 0.023488 0.194981 0.012814 0.022177 0.280560 0.013869 0.023255 0.205669
Fastformer 0.001588 0.002370 0.991806 0.002364 0.003611 0.980927 0.004277 0.006540 0.937186
SCINet 0.007999 0.009788 0.860212 0.008679 0.010604 0.835502 0.009279 0.011567 0.803483
Mamba 0.005645 0.007451 0.918990 0.006281 0.008442 0.895743 0.007645 0.010588 0.835350
DGINet 0.000837 0.001275 0.997628 0.001309 0.002248 0.992608 0.002933 0.005358 0.957835
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Fig. 11. Comparison of wind shear coefficient prediction track and actual test value.

corner is relatively scattered. As the prediction time span increases, this
phenomenon becomes more and more significant. This is because when
the wind shear coefficient is stable, the uncertainty is small, which
conforms to the long-term law, while the uncertainty is large during
the time period when the wind shear coefficient changes dramatically.

Fig. 13 shows the results of the wavelet time-frequency analysis
of the wind shear coefficient prediction error. The representation of
its graphical elements is consistent with the wavelet time-frequency
figure of wind speed. As time goes by, the prediction error continues to
increase, but the error energy of the proposed model is lower than that
of the three comparison models in each time span. It can be seen that
the error energy of Mamba is significantly higher than others, which
is consistent with the prediction trajectory and more intuitive. In the
wavelet time-frequency figure of the proposed model, the error energy
in the high-frequency interval is significantly lower than others, which

10

shows that the proposed model extracts the data pattern and reduces
the randomness of the prediction error. In addition, there is a high-
energy area of prediction error on the right side of each subfigure,
which is consistent with the interval of large changes in the wind shear
coefficient. This means that when the uncertainty of the wind shear
coefficient increases, the prediction error will increase accordingly.

5.3. Ablation experiment of wind speed and wind shear coefficient

Table 4 shows the difference in wind speed prediction performance
between the ablation experiments at multiple time spans (including
15 min, 30 min and 1 h). In the ablation experiments, the proposed
model performs best on all time spans, with the lowest MAE and RMSE
and the highest R? value. When predicting for 15 min and 1 h, the



K. Fu and Z. Ren

Information Fusion 125 (2026) 103478

020 020 020 020
E —— theoretical —— theoretical —— theoretical —— theoretical
k> prediction prediction prediction prediction
S 015 015 0.15 015
k=)
1] B
S k
2 o0 0.10 0.10 0.10
g
ﬁ test value v test value test value
0.05 005 0.05 005
0.05 0.10 015 020 005 0.10 015 020 005 010 015 020 0.05 0.10 015 020
(al) GRU- 15 minute (a2) Fastformer- 15 minute (a3) Mamba- 15 minute (a4) DGINet- 15 minute
020 020 020 020
E —— theoretical theoretical —— theoretical theoretical
k] prediction prediction prediction prediction
S 015 015 0.15 015
g ;
5] . . B
S ; g ; ;
2 o0 0.10 E 0.10 0.10
g
3 P test value v test value test value
0.05 0.05+5 0.05 - 0.05
0.05 0.10 015 020 005 0.10 015 020 005 0.10 015 020 005 0.10 015 020
(51> GRU- 30 minute (b2) Fastformer- 30 minute (53) Mamba- 30 minute (b4) DGINet- 30 minute
020 020 020 020
E — theoretical — theoretical — theoretical — theoretical
9 prediction prediction prediction prediction
&% 0.15 015 0.15 015
5 i £ 2 ,
S ; k4 3 ;
0.10 0.10 0.10 0.10
: 1 1 i
ﬁ 7 test value [ test value A test value test value
0.05 005+ 0.05 -2 005
0.05 010 015 020 005 0.10 015 020 005 010 015 020 005 0.10 015 020
Shear coefficient Shear coefficient Shear coefficient Shear coefficient
(c1) GRU- 60 minute (c2) Fastformer- 60 minute (¢3) Mamba- 60 minute (c4) DGINet- 60 minute
Fig. 12. Scatter plot comparison between prediction track and actual test value of wind shear coefficient.
256.0 256.0 256.0
1
| -
128.0 128.0 128.0
N B
o 640 640 ¢
I 3
5 320 320 320 L
% X y . *
160 16.0 16.0 -6
-
8.0 8.0 8.0
0 480 960 0 480 960 0 480 960
(al) GRU- 15 minute (a2) Fastformer- 15 minute (a3) Mamba- 15 minute (a4) DGINet- 15 minute
256.0 256.0
128.0 128.0
S
E’ 64.0 64.0
g
g
% 320 320
=160 - L 160
80 ' < : 80
0 480 960 0 480 960
(b1) GRU- 30 minute (b2) Fastformer- 30 minute (b3) Mamba- 30 minute
S
22
g
g
£
=

480
Sample Sample

(c1) GRU- 60 minute (c2) Fastformer- 60 minute

0 480

Sample

(c3) Mamba- 60 minute (c4) DGINet- 60 minute

Fig. 13. Comparison of wavelet time-frequency graph of wind shear coefficient prediction errors.

Table 4
Wind speed prediction results for ablation experiments with different time spans (including 15 min, 30 min and 1 h).
Model Time span
15 min 30 min 1h
MAE RMSE RrR? MAE RMSE R? MAE RMSE R?
DGINet 0.051300 0.065637 0.999006 0.091662 0.116207 0.996880 0.170763 0.220009 0.988785
graph2 0.110899 0.140680 0.995435 0.174715 0.220066 0.988810 0.245855 0.315730 0.976904
graph3 0.098474 0.124034 0.996451 0.128719 0.162765 0.993878 0.212346 0.272800 0.982758
graph4 0.099095 0.130965 0.996043 0.141838 0.186426 0.991969 0.227769 0.297832 0.979448
graph5 0.099182 0.125153 0.996387 0.135498 0.173600 0.993036 0.234535 0.298443 0.979364

prediction performance of graph2, graph3, graph4 and graph5 is rela-
tively close, but all lower than the proposed algorithm. However, when
predicting for 30 min, the performance of graph2 is significantly worse
than the other three models. Subsequent comprehensive comparisons
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across all time spans confirmed that graph2 consistently yielded the
lowest prediction accuracy. Notably, its performance degradation was
most pronounced at the 30-min mark. Compared with the proposed
model, the only difference is that the decoder of graph2 is replaced
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Table 5
Wind shear coefficient prediction results for ablation experiments with different time spans (including 15 min, 30 min and 1 h).
Model Time span
15 min 30 min 1h
MAE RMSE RrR? MAE RMSE R? MAE RMSE R?
DGINet 0.000837 0.001275 0.997628 0.001309 0.002248 0.992608 0.002933 0.005358 0.957835
graph2 0.001596 0.002112 0.993491 0.002401 0.003167 0.985329 0.002787 0.004739 0.967019
graph3 0.000999 0.001480 0.996803 0.001439 0.002385 0.991680 0.002854 0.005019 0.962996
graph4 0.001196 0.001828 0.995123 0.001638 0.002672 0.989555 0.003034 0.005227 0.959865
graph5 0.001314 0.001825 0.995142 0.001415 0.002435 0.991327 0.003197 0.005274 0.959139

by GRU, which means that the proposed decoder module is sensible.
Furthermore, the proposed scheme can be calculated in parallel, while
GRU does not support parallel calculation. The observed trend across
all models reveals a increase in prediction errors with longer prediction
horizons. This because the inherent complexities of long-term wind
prediction, linked to the uncertainty and non-stationarity characteristic
of wind patterns over extended durations.

Table 5 shows the difference in wind shear prediction performance
between the ablation experiments at multiple time spans (including
15 min, 30 min and 1 h). Comprehensively analyzing Tables 5 and
4, due to the difference in magnitude, the prediction error of wind
speed still occupies a large weight, while the prediction error of wind
shear coefficient is relatively small. As can be seen from Table 5, the
prediction results of wind shear coefficient at 15 min and 30 min show
that the proposed model still has the lowest MAE and RMSE and the
highest R? value, which indicates that the proposed model has the
highest prediction accuracy. However, the discordant part is that when
the time span is extended to one hour, the prediction results of graph2
and graph3 on wind shear coefficient actually exceed the proposed
model. However, combined with the wind speed prediction results,
the comprehensive prediction results of the proposed model are better.
In addition, the encoders of graph2 and graph3 have not changed,
which shows that the proposed sample reconstruction method and
graph structure data processing method are effective and reasonable. A
step back, the decoders of graph2 and graph3 do not support parallel
computing, which is the focus of the significant promotion superiority
of the proposed model.

6. Conclusion

This paper considers the time-varying characteristics of the wind
shear coefficient, realizes the future prediction based on the surface
wind speed and the time-varying wind shear coefficient, and can infer
the future wind speed at a specified height. It is worth noting that this
paper studies the problem of synchronous prediction of low-altitude
wind speed and wind shear coefficient, two key variables in the vertical
wind profile assessment, at multiple time scales for the first time.
This study constructed an ideal multi-task learning model, strengthened
the feature expression ability of the backbone network, and simplified
the sub-networks for specific tasks. The model adopted an encoder—
decoder architecture, proposed a sample reconstruction method within
a sliding window, and used improved gated graph unit to construct a
graph feature encoder. At the same time, two-dimensional convolution
was used to extract the spatial relationship feature encoding of 16-
dimensional sample features. The decoder used the output features of
the encoder for interactive learning, and then inferred the time series
prediction results of wind speed and wind shear coefficient through two
neurons respectively. The proposed model shows excellent prediction
performance in the time spans of 15 min, 30 min, and 1 h. Using MAE,
RMSE, and R2 as evaluation indicators, the prediction error or devia-
tion from the perfect prediction of the proposed model is significantly
reduced, verifying its potential for engineering application.

Overall, this study provides a new method for wind resource as-
sessment, which is expected to improve the accuracy of wind resource
and wind power assessment. The limitation of this paper is that if the

evolution pattern of the wind shear coefficient is seriously inconsistent
with the training stage, it will lead to large prediction errors. In the
future, we will study the calibration and anomaly detection of wind
shear coefficient, because the wind shear coefficient varies with seasons
and climate, and excessive wind shear will have a negative impact on
the normal operation of wind turbines. In addition, we will further
explore model explainability [48] to improve reliability in practical
applications.
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